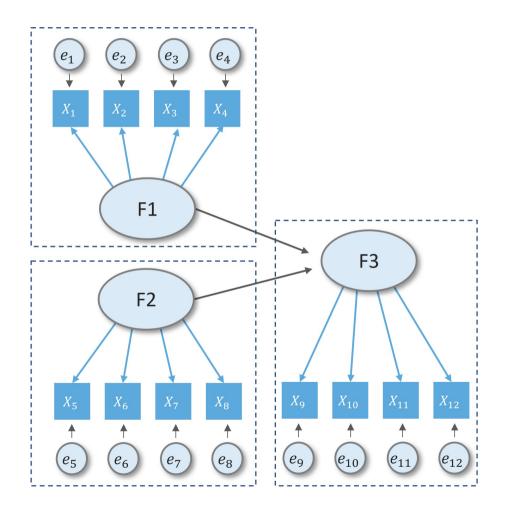
Training Workshop on the basics of SEM using R

Session 2: CFA and SEM

Topic overview

- 1: CFA-SEM overview
- 2: CFA-SEM with Lavaan
- **3**: Defining constructs
- **4**: Developing the overall measurement model
- 5: Assessing measurement model validity
- 6: Specifying the structural model
- 7: Assessing structural model validity

CFA-SEM overview

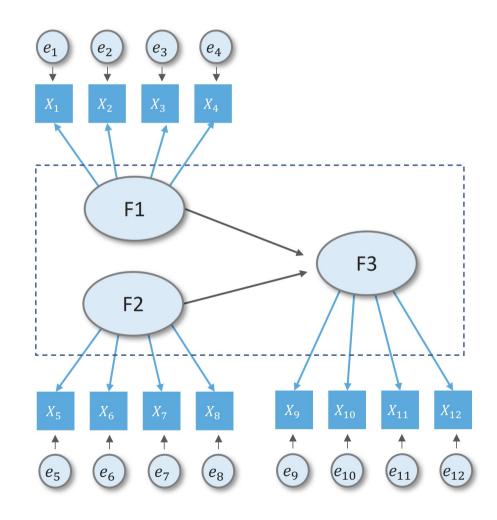

What is SEM?

- Not a one statistical "technique"
- Integrates a number of different multivariate technique
 - Factor analysis
 - \circ Regression
 - Simultaneous equation
- Distinction between:
 - measurement model
 - \circ structural model

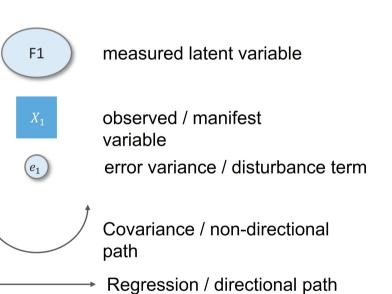
What is SEM?

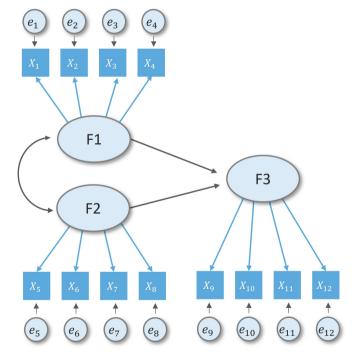
Measurement model

- measurement part of a a full SEM model
- confirmatory factor analysis


What is SEM?

Measurement model


- measurement part of a a full SEM model
- confirmatory factor analysis


Structural model

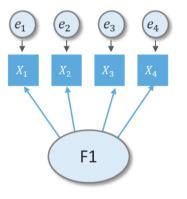
- relationship between constucts
- full sem model is combination of measurement and structural component

Basic SEM conventions

2. CFA-SEM with Lavaan R package

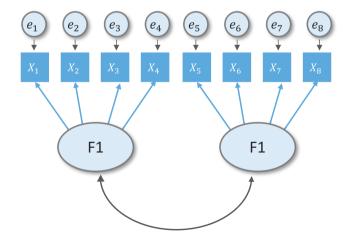
What is Lavaan?

- "developed to provide useRs, researchers, and teachers a free opensource, but commercial quality", Yves Rosseel (2012)
- Check-out their lavaan tutorial

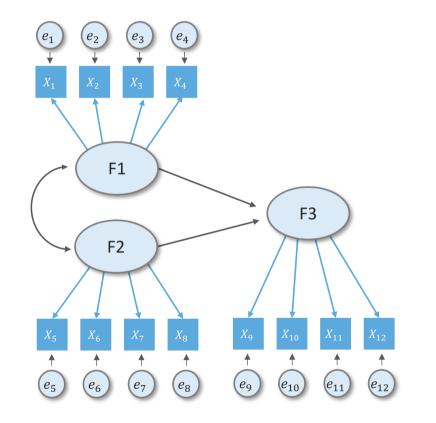

```
install.packages("lavaan")
library(lavaan)
example(cfa)
```

```
cfa> ## The famous Holzinger and Swineford (1939) example
cfa> HS.model <- ' visual =~ x1 + x2 + x3
cfa+ textual =~ x4 + x5 + x6
cfa+ speed =~ x7 + x8 + x9 '
cfa> fit <- cfa(HS.model, data = HolzingerSwineford1939)
cfa> summary(fit, fit.measures = TRUE)
lavaan 0.6-9 ended normally after 35 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 21
```

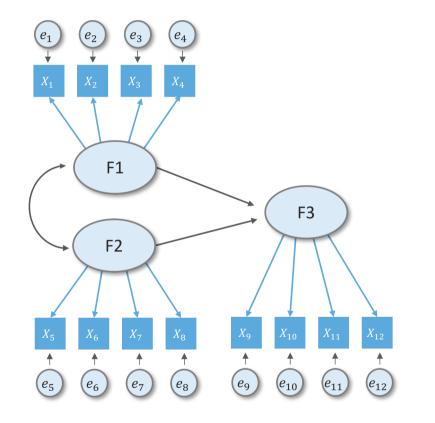
Command	Operator	Illustration	Significance
Estimate covariance	~~	X ~~ Y	X is correlated with Y
Estimate regression	~	Y ~ X	Y is regressed on X
Define a reflective latent variable	= ~	F =~ item_1 + item_2 + item_3	The F factor is measured by indicators item 1, item 2, and item 3 over which it has effects
Label a parameter	*	F =~ b1*item_1 + b2*item2 + b3*item3	Item 1-3 is named "b1", "b2", and "b3", respectively.
Create a new parameter	:=	B1b2 := b1*b2	Define a parameter that is not in the model. For example: b1b2 = indirect effect of b1 and b2
Insert a comment in the syntax	#	#indirect effects B1b2 := b1*b2	Explain to the reader the meaning of a command.


Defining a reflective latent variable

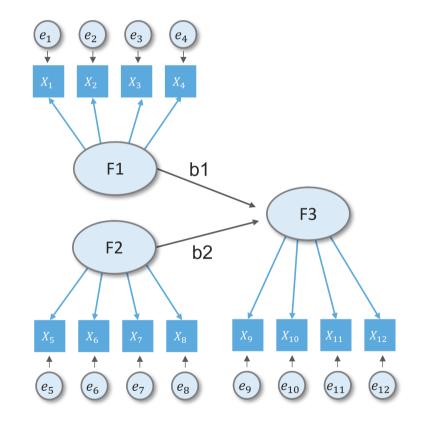
model <- "F1 =~ x1 + x2 + x3 + x4"


Estimate factor covariance

```
model <- "F1 =~ x1 + x2 + x3 + x4
F2 =~ x5 + X6 + x6 + x8
F1 ~~ F2"
```

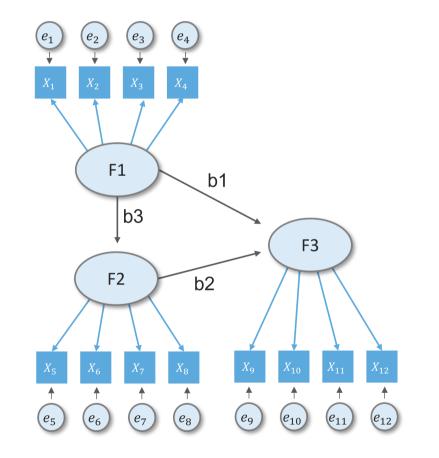


Estimate regression

model <- "F1 =~ x1 + x2 + x3 + x4
F2 =~ x5 + X6 + x7 + x8
F3 =~ x9 + X10 + x11 + x12
F1 ~~ F2
F3 ~ F1 + F2"</pre>


Insert a comment in the syntax

model <- "F1 =~ x1 + x2 + x3 + x4
F2 =~ x5 + X6 + x7 + x8
F3 =~ x9 + X10 + x11 + x12
covariance
F1 ~~ F2
F3 is regressed on F1 and F2
F3 ~ F1 + F2"</pre>

Label a parameter


```
model <- "F1 =~ x1 + x2 + x3 + x4
    F2 =~ x5 + X6 + x7 + x8
    F3 =~ x9 + X10 + x11 + x12
    # covariance
    F1 ~~ F2
    # F3 is regressed on F1 and F2
    F3 ~ b1*F1 + b2*F2"</pre>
```


Create a new parameter

```
model <- "F1 =~ x1 + x2 + x3 + x4
F2 =~ x5 + X6 + x7 + x8
F3 =~ x9 + X10 + x11 + x12

# regression
F3 ~ b1*F1 + b2*F2
F2 ~ b3*F1
# F1 indirect effect
ie := b3*b2
# F1 total effect
te := b3*b2 + b1"</pre>
```


Main steps in SEM

Main steps in SEM

- 1. Defining constructs
- 2. Developing the overall measurement model
- 3. Assessing measurement model validity
- 4. Specifying the structural model
- 5. Assessing structural model validity

1. Defining Constructs

Dataset

- HBAT company
- HBAT is interested in understanding what affects employee's attitudes and behaviors that contributes to employee's retension.

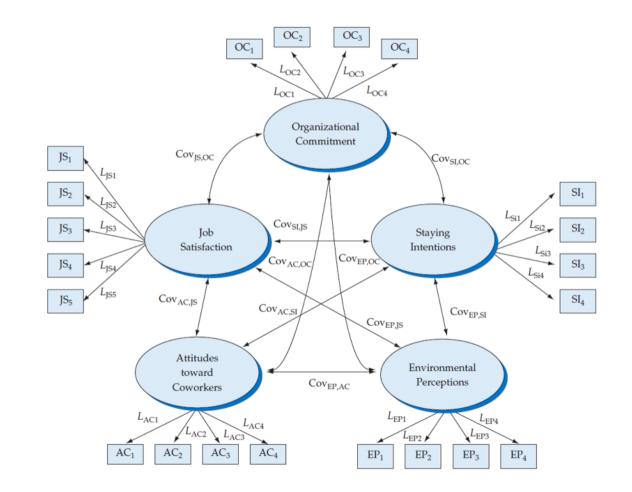
JS1	OC1	OC2	EP1	OC3	OC4	EP2	EP3	AC1	EP4
<dpl></dpl>	<dbl></dbl>	<dpl></dpl>	<dpl></dpl>	<dbl></dbl>	<dpl></dpl>	<dpl></dpl>	<dbl></dbl>	<dpl> <</dpl>	<dbl></dbl>
5	3	5	10	10	10	10	5	1	2
3	0	5	10	3	7	10	10	2	7
4	6	10	10	10	10	10	10	1	7
4	7	7	10	10	7	10	9	2	7
5	2	10	10	9	9	9	10	1	6
6	5	8	8	7	7	10	7	1	7
2	6	10	9	10	9	9	9	2	6
2	4	9	10	9	7	10	10	1	7
4	9	10	8	10	10	6	8	3	3
5	5	9	10	9	10	10	8	2	7
1-10 o	f 400 i	rows	1-1	Previe	ous 1	2 3	4 5	6 40) Next

Defining individual constructs

- Based on literature and preliminary interviews, a study was designed focusing on five key constructs.
 - *Job satisfaction (JS)* : reactions resulting from an appraisal of one's job situation.
 - *Organizational commitment (OC)*: extent to which an employees indentifies and feels part of HBAT.
 - *Staying intention (SI)*: extent to which an employee intends to continue working for HBAT.
 - *Environmental perceptions (EP)*: beliefs an employee has about day-to-day, physical working conditions.
 - *Attitudes towards cowrokers (AC)*: attitudes an employee has toward the coworkers he/she interacts with on a regular basis.

Defining individual constructs

ltem	Scale Type	Description	Construct
JS1	0–10 Likert Disagree–Agree	All things considered, I feel very satisfied when I think about my job.	JS
OC1	0–10 Likert Disagree–Agree	My work at HBAT gives me a sense of accomplishment.	00
0C2	0–10 Likert Disagree–Agree	I am willing to put in a great deal of effort beyond that normally expected	OC
		to help HBAT be successful.	
EP ₁	0–10 Likert Disagree–Agree	I am comfortable with my physical work environment at HBAT.	EP
0C3	0–10 Likert Disagree–Agree	I have a sense of loyalty to HBAT.	OC
OC ₄	0–10 Likert Disagree–Agree	I am proud to tell others that I work for HBAT.	OC
EP ₂	0–10 Likert Disagree–Agree	The place I work in is designed to help me do my job better.	EP
EP3	0–10 Likert Disagree–Agree	There are few obstacles to make me less productive in my workplace.	EP
AC1	5-point Likert	How happy are you with the work of your coworkers?	AC
		Not happySomewhat happy Happy Very happy Extremely happy	
EP4	7-point Semantic Differential	What term best describes your work environment at HBAT?	EP
		Too hectic Very soothing	
JS ₂	7-point Semantic Differential	When you think of your job, how satisfied do you feel?	JS
		Not at all satisfied Very much satisfied	
JS3	7-point Semantic Differential	How satisfied are you with your current job at HBAT?	JS
		Very unsatisfied Very satisfied	
AC ₂	7-point Semantic Differential	How do you feel about your coworkers?	AC
		Very unfavorable Very favorable	
SI ₁	5-point Likert Disagree–Agree	I am not actively searching for another job.	SI
		Strongly disagree Strongly agree	
JS4	5-point Likert	How satisfied are you with HBAT as an employer?	JS
		Not at all Little Average A lot Very much	
SI ₂	5-point Likert Disagree–Agree	I seldom look at the job listings on monster.com.	SI
		Strongly disagree Strongly agree	
JS ₅	Percent Satisfaction	Indicate your satisfaction with your current job at HBAT by	JS
		placing a percentage in the blank, with $0\% = Not$ satisfied at all,	
		and 100% = Highly satisfied.	


		placing a percentage of the b, with 0% = Not satisfied at all,	\sum
	×	and 100% = Highly satisfied	
AC ₃	5-point Likert	How often do you do things with your coworkers on your days off?	AC
		Never Rarely Occasionally Often Very often	
SI ₃	5-point Likert Disagree–Agree	I have no interest in searching for a job in the next year. Strongly	SI
		disagree Strongly agree	
AC ₄	6-point Semantic Differential	Generally, how similar are your coworkers to you?	AC
		Very different Very similar	
SI4	5-point Likert	How likely is it that you will be working at HBAT one year from today?	SI
		Very unlikely Unlikely Somewhat likely Likely Very likely	

Source: JF Hair et al. (2019) : Multivariate data analysis

Step 2. Developing overall measurement model

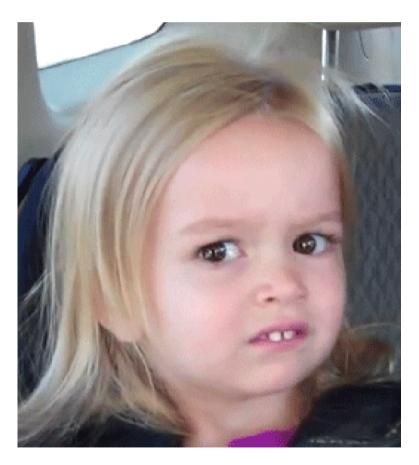
Developing overall measurement model

- Measurement theory model (CFA) for HBAT employees
- Direction of the relationship between factors is not yet defined.
- Focus on confirming the specified model with empirical model (using empirical data), hence confirmatory.

Let's practice!

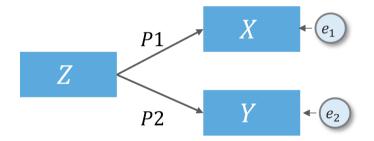
Step 3. Assessing measurement model validity

Basic principles


- Compare covariance matrix of the research data S and reproduced covariance $\boldsymbol{\Sigma}$
- Hypothesis:
 - $\begin{tabular}{ll} \circ & \mbox{Null: } S = \Sigma \\ \circ & \mbox{Atternative: } S \neq \Sigma \end{tabular} \end{tabular}$
- Idea is to arrived with a parameter that minimizes the difference of S and $\boldsymbol{\Sigma}$

```
cfa_fit <- cfa(cfa_model, data = hbat_data)
cfa_fit %>% summary()
```

lavaan 0.6-9 ended normally after 54	iterations
Estimator Optimization method Number of model parameters	ML NLMINB 52
Number of observations	400
Model Test User Model:	
Test statistic	240.738
Degrees of freedom	179
P-value (Chi-square)	0.001
Parameter Estimates:	


Basic principles

- Compare covariance matrix of the research data S and reproduced covariance $\boldsymbol{\Sigma}$
- Hypothesis:
 - $\begin{tabular}{ll} \circ & \mbox{Null: } S = \Sigma \\ \circ & \mbox{Atternative: } S \neq \Sigma \end{tabular} \end{tabular}$
- Idea is to arrived with a parameter that minimizes the difference of S and $\boldsymbol{\Sigma}$

Basic principles

- To understand the SEM process, consider the Table on the right.
- e.g., iterative procedure using least square method.

	Param	neters	$r_{XZ} = 0.79$	$r_{YZ} = 0.59$	$r_{XY} = 0.49$	$\sum d^2$
Iteration cycles	P1	P2	Repro	oduced correlat	ions	Least squares
1	0.50	0.50	0.50	0.50	0.250	0.149
1a	0.49	0.49	0.49	0.49	0.240	0.162
1b	0.49	0.50	0.49	0.50	0.245	0.158
1c	0.50	0.49	0.50	0.49	0.245	0.158
2	0.55	0.55	0.55	0.55	0.300	0.094
2a	0.60	0.60	0.60	0.60	0.360	0.024
3	0.65	0.61	0.65	0.61	0.400	0.027
3a	0.65	0.62	0.65	0.62	0.403	0.028
4	0.67	0.61	0.67	0.61	0.408	0.021
4a	0.70	0.61	0.70	0.61	0.427	0.012
4b	0.75	0.61	0.75	0.61	0.457	0.003
4c	0.80	0.61	0.80	0.61	0.480	0.0006
5	0.81	0.61	0.81	0.61	0.494	0.0008

• Overall results

• Loadings

• Variances

cfa_fit <- cfa(cfa_model, data = hbat_data)
summary(cfa_fit)</pre>

lavaan 0.6-9 ended normally after 54 iterations

Estimator Optimization method Number of model parameters	ML NLMINB 52
Number of observations	400
Model Test User Model:	
Test statistic Degrees of freedom P-value (Chi-square)	240.738 179 0.001
Parameter Estimates:	

Overall results

- Degrees of freedom (df)
 - $egin{array}{lll} \circ & df = rac{1}{2}p(p+1)-k \ \circ & p = ext{total observed variables} \end{array}$
 - $\circ k$ = total estimated parameters
- Identification
 - Include at least three manifest variables
 - $\circ~$ Create models with df>0

cfa_fit <- cfa(cfa_model, data = hbat_data)
summary(cfa_fit)</pre>

lavaan 0.6-9 ended normally after 54 iterations

Estimator Optimization method Number of model parameters	ML NLMINB 52
Number of observations	400
Model Test User Model:	
Test statistic Degrees of freedom P-value (Chi-square)	240.738 179 0.001
Parameter Estimates:	

Loadings

 Measures the strength of the relationship between items and factor. cfa_fit <- cfa(cfa_model, data = hbat_data)
summary(cfa_fit, standardized = TRUE)</pre>

lavaan 0.6-9 ended normally after 54	iterations
Estimator Optimization method Number of model parameters	ML NLMINB 52
Number of observations	400
Model Test User Model:	
Test statistic Degrees of freedom P-value (Chi-square)	240.738 179 0.001
Parameter Estimates:	

Variances

Refer to unique variance that the factor unable to account for. Similar to error term in OLS, hence it is also term as error variance. cfa_fit <- cfa(cfa_model, data = hbat_data)
summary(cfa_fit, standardized = TRUE)</pre>

lavaan 0.6-9 ended normally after 54	iterations
Estimator Optimization method Number of model parameters	ML NLMINB 52
Number of observations	400
Model Test User Model:	
Test statistic Degrees of freedom P-value (Chi-square)	240.738 179 0.001
Parameter Estimates:	

Goodness of fit indices

- Goodness-of-fit index (GFI)
- Adjusted goodness-fit-index (AGFI)
- Comparative fit index (CFI)
- Normed fit index (NFI)
- Non-normed fit index (NNF)

Badness of fit indices

- Standard root mean square of the residuals (SRMR)
- Root mean square error of approximation (RMSEA)

Fit indices	Recommended value	Sources	Research model
χ^2	_	_	369.4
df	_	_	120
χ^2/df	< 5	Bollen (1989)	3.08
ĜFI	>0.9	Scott (1995)	0.91
AGFI	>0.8	Scott (1995)	0.87
SRMR	< 0.1	Hu and Bentler (1999)	0.034
CFI	>0.9	Bagozzi and Yi (1988)	0.96
RMSEA	< 0.08	MacCallum et al. (1996)	0.071
NFI	>0.9	Bentler and Bonett (1980)	0.95
NNFI	>0.9	Bentler and Bonett (1980)	0.95

Table 3. Goodness of fit of the measurement model.

Sample GOF results from W. Shiau & M. Luo (2013). Continuance intention of blog users: The

impact of perceived enjoyment, habit, user involvement and blogging time.

Goodness of fit indices

- Goodness-of-fit index (GFI)
- Adjusted goodness-fit-index (AGFI)
- Comparative fit index (CFI)
- Normed fit index (NFI)
- Non-normed fit index (NNF)

fitMeasures(cfa_fit)

npar	fmin	chis
52.000	0.301	240.73
pvalue	baseline.chisq	baseline.d [.]
0.001	4452.567	210.000
cfi	tli	nnf
0.985	0.983	0.98
nfi	pnfi	if
0.946	0.806	0.98
logl	unrestricted.logl	ai
-13916.782	-13796.413	27937 . 564
ntotal	bic2	rmsea
400.000	27980.120	0.029
rmsea.ci.upper	rmsea.pvalue	rmı
0.039	1.000	0.414
srmr	srmr_bentler	srmr_bentler_nomea
0.036	0.036	0.03
crmr_nomean	srmr_mplus	srmr_mplus_nomea
0.037	0.036	0.03
cn_01	gfi	agf
376.401	0.947	0.93

34

Goodness of fit indices

- Goodness-of-fit index (GFI)
- Adjusted goodness-fit-index (AGFI)
- Comparative fit index (CFI)
- Normed fit index (NFI)
- Non-normed fit index (NNF)

fitMeasures(cfa_fit, fit.measures = c("gfi", "agfi", "cfi

gfi agfi cfi nfi nnfi 0.947 0.932 0.985 0.946 0.983

Badness of fit indices

- Standard root mean squrare residual (SRMR)
- Root mean square error of approximation (RMSEA)

fitMeasures(cfa_fit, fit.measures = c("srmr", "rmsea"))

srmr rmsea 0.036 0.029

Reliability and validity test

Reliability test

• Composite reliability

Validity test

- Convergent validity
- Discriminant validity

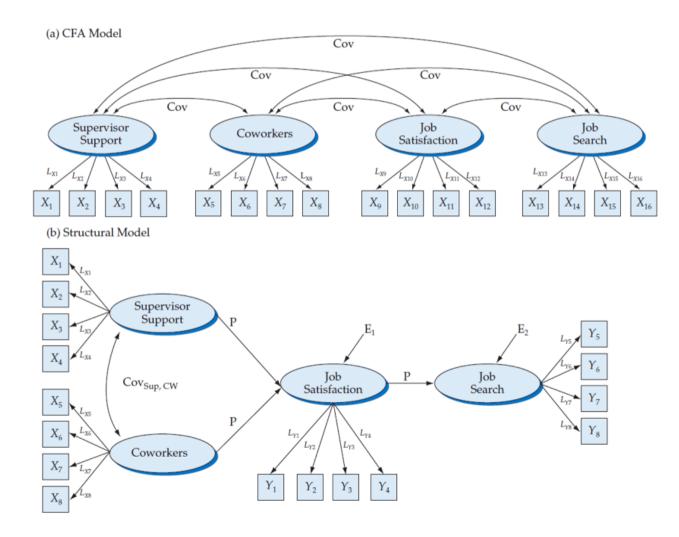
	α	CR	AVE	CU	TD	FI	HE	IN	INTE	SA
CU	0.94	0.96	0.89	0.95 ^a						
TD	0.88	0.93	0.81	0.58	0.90					
FI	0.92	0.94	0.76	0.74	0.78	0.87				
HE	0.94	0.96	0.89	0.79	0.59	0.74	0.94			
IN	0.88	0.92	0.74	0.51	0.48	0.51	0.59	0.86		
INTE	0.88	0.92	0.80	0.61	0.54	0.60	0.66	0.70	0.89	
SA	0.88	0.93	0.80	0.41	0.38	0.44	0.56	0.59	0.59	0.90
NT .	0 1		CD			OTT · ·			1	

Notes: α , Cronbach's α ; CR, composite reliability. CU, CUriosity; HE, Heightened Enjoyment; TD: Temporal Dissociation; FI: Focused Immersion; IN: INteractivity; INTE: INTEreat; SA: SAtisfaction. ^aThe square root of AVE

Source: A. Hou, W. Shiau, & R. Shang (2019). The involvement paradox. The role of cognitive absorption in mobile instant messaging user satisfaction.

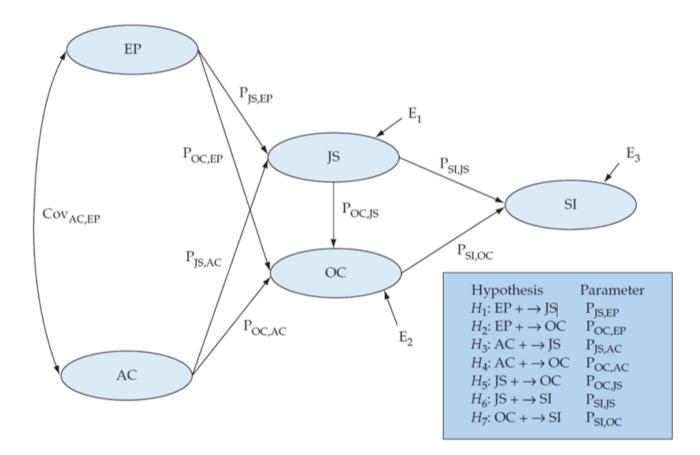
Reliability and validity test

- Composite reliability: alpha > 0.70
- Convergent validity: AVE (avevar) > 0.50
- Discriminant validity: omega > 0.7

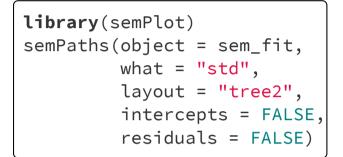

library(semTools)
reliability(cfa_fit) %>% round(3)

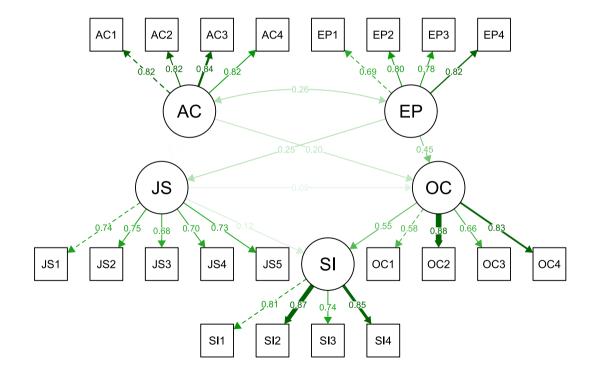
	SI	JS	AC	EP	OC
alpha	0.886	0.281	0.891	0.847	0.823
omega	0.887	0.640	0.893	0.850	0.827
omega2	0.887	0.640	0.893	0.850	0.827
omega3	0.887	0.641	0.893	0.850	0.818
avevar	0.664	0.535	0.677	0.587	0.552

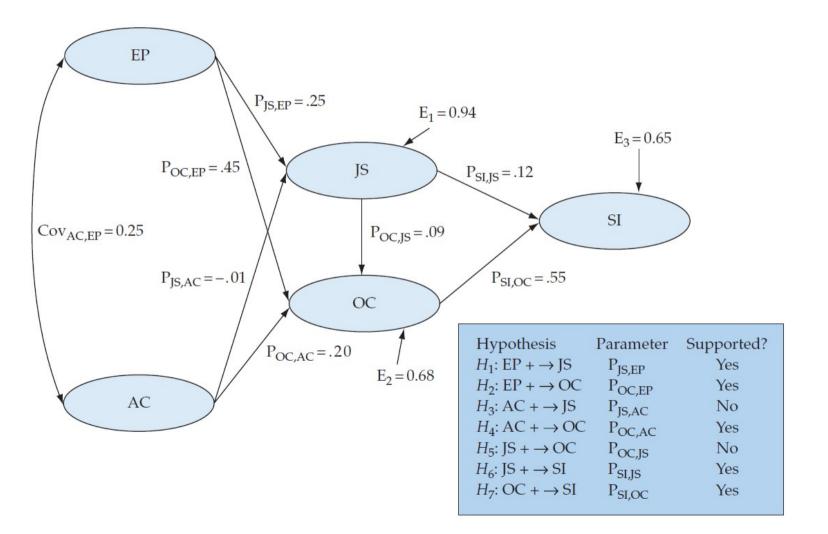
Let's practice


Step 4: Specifying the structural model

CFA model to structural model




Hypothesis:


- H1: Environmental perceptions are positively related to job satisfaction.
- H2: Environmental perceptions are positively related to organizational commitment.
- H3: Attitudes toward coworkers are positively related to job satisfaction.
- H4: Attitudes toward coworkers are positively related to organizational commitment.
- H5: Job satisfaction is related positively to organizational commitment.
- H6: Job satisfaction is related positively to staying intentions.
- H7: Organizational commitment is related positively to staying intention.

Let's practice

GOF measures between structural and CFA model

	<pre>rmsea', 'ru nnfi', 'cf t, fit.mea</pre>	mr', 'srmr i', 'agfi' sures = go
chisq df p 287.179 181.000 agfi 0.921		gfi rmsea 938 0.03a
chisq df p 240.738 179.000 agfi 0.932		gfi rmsea 947 0.029

GOF index	Employee retention model	CFA model
χ^2 (chi-square)	287.179	240.738
Degrees of freedom	181	179
Probability	0.000	0.001
GFI	0.938	0.947
RMSEA	0.038	0.029
RMR	0.410	0.414
SRMR	0.060	0.036
NFI	0.936	0.946
NNFI	0.971	0.983
CFI	0.975	0.985
AGFI	0.921	0.932

What's next?

- Modification indeces
- Handling heywood cases
- Comparing competing models
- Formative scales in SEM
- Higher-order factor analysis
- Multigroup analysis

Thank you!

Slides created via the R packages:

xaringan by Yihui

xaringanthemer and xaringanExtra by Garrick