
Training Workshop on the basics of 
SEM using R

Session 1: Exploratory Factor Analysis (EFA)



Factor analysis process
Stage 1: Objectives of factor analysis

Stage 2: Designing an Exploratory factor analysis

Stage 3: Assumptions in Exploratory factor analysis

Stage 4: Deriving factors and assessing overall fit

Stage 5: Interpreting the factors
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Stage 1 : Objectives of factor analysis
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Exploratory factor analysis

Use when you do not have a well-developed
theory

Estimate all possible variable/ factor
relationships

Looking for patterns in the data

Confirmatory factor analysis

Testing a theory that you know in advance

Only specified variables/factor relationships

Types of factor analysis
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Types of factor analysis
Exploratory factor analysis

Difficult to interpret without a theory.
factor loadings: meanings can sometimes be inferred from patterns.
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Types of factor analysis
Confirmatory factor analysis

Model fit: how well the hypothesized model fits the data.

Factor loadings: how well items measure their corresponding constructs.
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Stage 2: Designing an EFA
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Variable selection and measurement issues
What types of variables can be used in factor analysis?

Primary requirement: a correlation value can be calculated among all variables.
e.g., metric variables, scale items, dummy variables to represent nonmetric variables.

How many variables should be included?

Five or more per factor for scale development.
Three or more per factor for factor measurement (based on how degrees of freedom is computed).
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Sample size
Some recommended guidelines:

Absolute size of the dataset

should not fewer than 50 observation
preferably 100 and larger
200 and larger as the number of variables and expected factors incerases

Ratio of cases to variables

observation is 5x as the number of variables
sample size is 10:1 ratio
some proposes 20 cases per variables
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Stage 3: Assumptions in EFA
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HBAT Industries, manufacturer of
paper products.
Perceptions on a set of business
functions.
Rating scale:

0 "poor" to 10 "excellent"

Sample Dataset
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 product quality
 e-commerce
 technical support
 complaint resolution
 advertising
 product line
 salesforce image
 competitive pricing
 warranty claims
 packaging
 order & billing
 price flexibility
 delivery speed

Next1 2 3 4 5 6 ... 10Previous

x6
<dbl+lbl>

x7
<dbl+lbl>

x8
<dbl+lbl>

x9
<dbl+lbl>

x10
<dbl+lbl>

x11
<dbl+lbl>

x12
<dbl+lbl>

8.5 3.9 2.5 5.9 4.8 4.9 6.0
8.2 2.7 5.1 7.2 3.4 7.9 3.1
9.2 3.4 5.6 5.6 5.4 7.4 5.8
6.4 3.3 7.0 3.7 4.7 4.7 4.5
9.0 3.4 5.2 4.6 2.2 6.0 4.5
6.5 2.8 3.1 4.1 4.0 4.3 3.7
6.9 3.7 5.0 2.6 2.1 2.3 5.4
6.2 3.3 3.9 4.8 4.6 3.6 5.1
5.8 3.6 5.1 6.7 3.7 5.9 5.8
6.4 4.5 5.1 6.1 4.7 5.7 5.7

1-10 of 100 rows | 1-7 of 11 col…

Source: J.F. Hair (2019): Multivariate data analysis.

Sample Dataset

X6

X7

X8

X9

X10

X11

X12

X13

X14

X15

X16

X17

X18

12



Some uderlying structure does exist in the set of selected variables.
correlated variables and subsequent definition of factors do not
guarantee relevance

even if they meet the statistical requirement!
It is the responsibility of the researcher to ensure that observed
patterns are conceptually valid and appropriate.

Conceptual assumptions
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Determining appropriateness of EFA
1. Bartlett Test

2. Measure of Sampling Adequacy
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1. Bartlett Test

Examines the entire correlation matrix
Test the hypothesis that correlation matrix is
an identity matrix.
A significant result signifies data are
appropriate for factor analysis.

library(EFAtools)
BARTLETT(data, N= nrow(data))

Run

Determining the appropriateness of EFA

15



Determining the appropriateness of EFA
2. Kaiser-Meyen-Olkin (KMO Test)

Measure of sampling adequacy
Indicate the proportion of variance explained by the underlying factor.
Guidelines:

 - marvelous
 - meritorious
 - middling
 - mediocre
 - miserable
 - unacceptable

≥ 0.90

≥ 0.80

≥ 0.70

≥ 0.60

≥ 0.50

< 0.50
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Determining the appropriateness of EFA
2. Kaiser-Meyen-Olkin (KMO Test)

-- Kaiser-Meyer-Olkin criterion (KMO) ------------------------------------------

! The overall KMO value for your data is mediocre.
  These data are probably suitable for factor analysis.

  Overall: 0.653

  For each variable:
   x6    x7    x8    x9   x10   x11   x12   x13   x14   x16   x18 
0.509 0.626 0.519 0.787 0.779 0.622 0.622 0.753 0.511 0.760 0.666
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Determining the appropriateness of EFA
2. Kaiser-Meyen-Olkin (KMO Test)

When overall MSA is less than 0.50
Identify variables with lowest MSA subject for deletion.
Recalculate MSA
Repeat unitl overall MSA is 0.50 and above

Deletion of variables with MSA under 0.50 means variable's correlation with  
other variables are poorly representing the extracted factor.
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Let's practice!
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Stage 4: Deriving factors and  
assessing overall fit
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Unique variance

Variance associated with only a specific
variable.
Not represented in the correlations among
variables.
Specific variance

associated uniquely with a single variable.
Error variance

May be due to unreliability of data
gathering process, measurement error, or
a random component in the measured
phenomenom.

Common variance

Shared variance with all other variables.
High common variance are more amenable for
factor analysis.
Derived factors represents the shared or
common variance among the variables.

Partitioning the variance of a variable
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Partitioning the variance of a variable

Source: JF Hair et al. (2019) Multivariate data analysis. 
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Principal component analysis (PCA)

Considers the total variance
data reduction is a primary concern

Common factor analysis

Considers only the common variance or shared
variance
Primary objective is to identify the latent
dimensions or constructs

 
 
 

Source: JF Hair et al. (2019) Multivariate data analysis.

PCA vs Common factor analysis
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1. Kaiser-Guttman Criterion

Only consider factors whose
eigenvalues is greater than 1.

Rationale is that factor should
account for the variance of at least a
single variable if it is to be retained
for interpretation.

library(EFAtools)
KGC(Data, eigen_type = "EFA")

Exploring possible factors
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2. Scree test

Identify the optimum number of
factors that can be extracted before
the amount of unique variance
begins to dominate the common
variance.

Inflection point or the "elbow"

library(psych)
scree(data)

Exploring possible factors
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3. Parallel Test

Generates a large number of simulated
dataset.
Each simulated dataset is factor analyzed.

Results is the average eigenvalues across
simulation.
Values are then compared to the
eigenvalues extracted from the original
dataset.
All factors with eigenvalues above those
average eigenvalues are retained.

library(psych)
fa.parallel(data, fa = "fa")

Exploring possible factors
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Let's practice!
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Stage 5: Interpreting the factors
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Three process of factor intepretation
1. Factor extraction

2. Factor rotation

3. Factor interpretation and re-specification
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Loadings:
    MR1    MR2    MR3    MR4   
x6   0.201 -0.408         0.463
x7   0.290  0.656  0.267  0.210
x8   0.278 -0.382  0.744 -0.169
x9   0.862        -0.255 -0.184
x10  0.287  0.456         0.127
x11  0.689 -0.454 -0.141  0.316
x12  0.398  0.807  0.348  0.255
x13 -0.231  0.553        -0.287
x14  0.378 -0.322  0.730 -0.151
x16  0.747        -0.176 -0.181
x18  0.895        -0.304 -0.198

                 MR1   MR2   MR3   MR4
SS loadings    3.215 2.226 1.500 0.679
Proportion Var 0.292 0.202 0.136 0.062
Cumulative Var 0.292 0.495 0.631 0.693

Loadings

Correlation of each variable and the factor.
Indicate the degree of correspondence
between variable and factor.
Higher loadings making the variable
representative of the factor.

Factor extraction
fa_unrotated <- fa(r = data, nfactors = 4,rotate 
print(fa_unrotated$loadings)

30



Loadings:
    MR1    MR2    MR3    MR4   
x6   0.201 -0.408         0.463
x7   0.290  0.656  0.267  0.210
x8   0.278 -0.382  0.744 -0.169
x9   0.862        -0.255 -0.184
x10  0.287  0.456         0.127
x11  0.689 -0.454 -0.141  0.316
x12  0.398  0.807  0.348  0.255
x13 -0.231  0.553        -0.287
x14  0.378 -0.322  0.730 -0.151
x16  0.747        -0.176 -0.181
x18  0.895        -0.304 -0.198

                 MR1   MR2   MR3   MR4
SS loadings    3.215 2.226 1.500 0.679
Proportion Var 0.292 0.202 0.136 0.062
Cumulative Var 0.292 0.495 0.631 0.693

Loadings

 zero
 to  meet the minimal level

 practically significant
 well-defined structure

SS loadings

Eigenvalues - column sum of squared factor
loadings.
Relative importance of each factor in
accounting for the variance associated with the
set of variables.

Factor extraction

fa_unrotated <- fa(r = data, nfactors = 4,ro
print(fa_unrotated$loadings)

≤ ±0.10 ≈

±0.10 ±0.40

≥ ±0.50

≥ ±0.70 ≈
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Why do factor rotation?

To simplify the complexity of factor loadings.
Distribute the loadings more clearly into the
factors.
Facilitate interpretation.

Factor rotation
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Factor rotation

par(mfrow = c(1, 2))
plot(fa_unrotated$loadings[,1]
     xlab = "Factor 1", ylab =
     ylim = c(-1, 1), xlim = c
     main = "No rotation",
     pch = 19, col = "#6c757d"
     abline(h=0, v=0)
     text(fa_unrotated$loading
          labels = rownames(fa
          pos = 4, cex = 0.5)

plot(fa_rotated$loadings[,1], 
     xlab = "Factor 1", ylab =
     ylim = c(-1, 1), xlim = c
     main = "With rotation",
     pch = 19, col = "#6c757d"
     abline(h=0, v=0)
     text(fa_rotated$loadings[
          labels = rownames(fa
          pos = 4, cex = 0.5)
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Orthogonal rotation

axes are maintained at 90 degrees
orthogonal rotation methods

Varimax - most commonly used
Quartimax
Equimax

Check-out some of these references
IBM
Factor analysis

Factor rotation
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https://www.ibm.com/docs/de/spss-statistics/24.0.0?topic=analysis-factor-rotation
http://statweb.stanford.edu/~susan/courses/stats305c/examplesFA.html


Factor rotation
Orthogonal rotation
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Oblique rotation rotation

allow correlated factors
suited to the goal of theoretically meaningful
constructs
oblique rotation methods

Promax
Oblimin

Factor rotation
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Factor rotation
Oblique rotation
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Let's practice!
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each variable has a high loadings on
one factor only

each factor has a high loadings for
only a subset of the items.

Loadings:
    MR1    MR2    MR3    MR4   
x9   0.897  0.130         0.132
x16  0.768  0.127              
x18  0.949  0.185              
x7          0.781        -0.115
x10  0.166  0.529              
x12  0.114  0.980        -0.133
x8                 0.890  0.115
x14  0.103         0.879  0.129
x6                        0.647
x11  0.525         0.127  0.712
x13         0.213 -0.209 -0.590

                 MR1   MR2   MR3   MR4
SS loadings    2.635 1.973 1.641 1.371
Proportion Var 0.240 0.179 0.149 0.125
Cumulative Var 0.240 0.419 0.568 0.693

Factor interpretation and respecification
fa_varimax <- fa(r = data, nfactors = 4, rotate = "varimax
print(fa_varimax$loadings, sort = TRUE)
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each variable has a high loadings on
one factor only

each factor has a high loadings for
only a subset of the items.

Loadings:
    MR1    MR2    MR3    MR4   
x9   0.897                     
x16  0.768                     
x18  0.949                     
x7          0.781              
x10         0.529              
x12         0.980              
x8                 0.890       
x14                0.879       
x6                        0.647
x11  0.525                0.712
x13                      -0.590

                 MR1   MR2   MR3   MR4
SS loadings    2.635 1.973 1.641 1.371
Proportion Var 0.240 0.179 0.149 0.125
Cumulative Var 0.240 0.419 0.568 0.693

Factor interpretation and respecification
fa_varimax <- fa(r = data, nfactors = 4, rotate = "varimax
print(fa_varimax$loadings, sort = TRUE, cutoff = 0.4)
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What to do with cross-loadings?

Ratio of variance (JF Hair et al. 2019)

1 to 1.5 - problematic
1.5 to 2.0 - potential cross-loading
2.0 and higher - ignorable

Example:

MR1: 0.525
MR2: 0.712

Loadings:
    MR1    MR2    MR3    MR4   
x9   0.897                     
x16  0.768                     
x18  0.949                     
x7          0.781              
x10         0.529              
x12         0.980              
x8                 0.890       
x14                0.879       
x6                        0.647
x11  0.525                0.712
x13                      -0.590

                 MR1   MR2   MR3   MR4
SS loadings    2.635 1.973 1.641 1.371
Proportion Var 0.240 0.179 0.149 0.125
Cumulative Var 0.240 0.419 0.568 0.693

Factor interpretation and respecification
fa_varimax <- fa(r = data, nfactors = 4, rotate = "varimax
print(fa_varimax$loadings, sort = TRUE, cutoff = 0.4)

X11

0.712
2

÷ 0.525
2

= 1.8
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Let's practice!
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xaringan by Yihui xaringanthemer and xaringanExtra
by Garrick

Thank you!
Slides created via the R packages:
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